CS166 Handout 2
Spring 2014 April 2, 2014

Assignment 1: Range Minimum Queries

We've covered several different data structures for solving the RMQ problem. In this assignment,
you'll explore variations on those data structures and will get to see them in action.

Before reading over this problem set, please be sure to read over Handout #02 detailing our
expectations for problem sets and Handout #03 describing our policies on the Honor Code.

Working in Pairs

You are welcome to work on the problem sets either individually or in pairs. If you work in pairs,
you should jointly submit a single assignment, which will be graded out of 23 points. If you work
individually, the problem set will be graded out of 19 points, but we will not award extra credit if
you earn more than 19 points.

Due Wednesday, April 9 at 2:15PM at the start of lecture.

Problem One: Sparse Tables with O(1) Queries (2 Points)

To compute RMQAa(Z, j) with a sparse table in time O(1), it's necessary to compute in time O(1) the
largest k for which 2* <j — i + 1. Explain how to modify the preprocessing step of the sparse table by
adding O(n) additional work such that you can answer these queries in time O(1). Feel free to introduce
as much additional memory as you think would be necessary.

You can assume that any basic operation on a machine word (addition, multiplication, bitwise AND,
bitshifts, etc.) takes time O(1) and that the size of the array fits into a machine word. However, you
should not assume that complex mathematical functions like logarithms or radicals can be evaluated in
time O(1). Additionally, the runtime of your operations should not directly depend on the size of a ma-
chine word, and you should not assume that the word size is necessarily 32 or 64 bits.

To make sure that you describe your data structure in the appropriate level of detail, please write up
your solution according to the guidelines in the Problem Set Policies handout.

Problem Two: Area Minimum Queries (7 Points)

In what follows, if A is a 2D array, we'll denote by A[7, j] the entry at row i, column j, zero-indexed.

This problem concerns a two-dimensional variant of RMQ called the area minimum query problem, or
AMQ. In AMQ, you are given a fixed, two-dimensional array of values and will have some amount of
time to preprocess that array. You'll then be asked to answer queries of the form “what is the smallest
number contained in the rectangular region with upper-left corner (7, j) and lower-right corner (k, /)?”

SSSAJSIS

following array:

31141 5926 53|58 97
93 123 | 84 64 33 83 27
95| 2 | 88 14197 16|93
99137 515 8,9 74
9414592 30 78 | 16 | 40

62| 86|20 8 | 98| 62|80
Here, A[0, 0] is the upper-left corner, and A[5, 6] is the lower-right corner. In this setting:

* AMQA4((0,0),(5,6))=2
* AMQA((0, 0), (0, 6)) =26
* AMOQA4((2,2),(3,3))=5
For the purposes of this problem, let m denote the number of rows in A and » the number of columns.

i. (2 Points) Design an (O(mn), O(min{m, n}))-time data structure for AMQ.

ii. (5 Points) Design an (O(mn log m log n), O(1))-time data structure for AMQ. In your writeup,
we will pay close attention to how you guarantee the O(mn log m log n) preprocessing time, so
please be sure to describe that step in detail and justify the runtime appropriately.

Problem Three: Hybrid RMQ Structures (4 Points)

For any k > 0, let's define the function log® 7 to be the function
log log log ... log n (k times)

For example:

log®n=n log"n=logn log?n=1loglogn log® n =log log log n

1. (3 Points) Using the hybrid framework, show that that for any fixed k£ > 1, there is an RMQ data
structure with time complexity (O(n log® n), O(1)). For notational simplicity, we'll refer to the
kth of these structures as Dxk.

ii. (1 Point) Although every Dk data structure has query time O(1), the query times on the Dk
structures will increase as k increases. Explain why this is the case and why this doesn't contra-
dict your result from part (i).

(The rest of this page is just for fun.)
The iterated logarithm function, denoted log* n, is defined as follows:
log* n is the smallest value of k for which log® n <1

Intuitively, log* n measures the number of times that you have to take the logarithm of » before n drops
to one. For example:

log*1=0 log*2=1 log* 4 =2 log* 16 =3 log* 65,536 =4 log* 203 =35

This function grows extremely slowly. For reference, the number of atoms in the universe is estimated
to be about 10" = 2°*_ and from the values above you can see that log* 10'” is 5.

For arrays of length n, the data structure Dy, is an (O(n log* n), O(log* n)) solution to RMQ. That's
crazily fast!

Problem Four: Implementing RMQ Structures (10 Points)

In this problem, you'll implement several RMQ structures in Java. In doing so, we hope that you'll get a
better feeling for some of the complexities involved in translating data structures into code.

For the purposes of this problem, your structures should answer range minimum queries by returning
index at which the minimum value in the range resides, rather than the value at that index. If there are
multiple values tied for the smallest, you can return any one of them.

The data structures you'll be implementing will answer RMQ over arrays of floats. We've chosen ar-
rays of floats because ints (representing indices) and floats (representing values) aren't implicitly
convertible to one another in Java. In other words, if you try to assign an index to a value or vice-versa,
you'll get a compiler error rather than a runtime error.

We've provided Java starter files at /usr/class/cs166/assignments/psl and a Makefile that will
build the project. The classes you need to implement are in the rmq directory. To run our driver program
on a particular data structure, you can run

java -ea RMQDriver your-rmq-structure random-seed,y:

Here, your-rmq-structure is the name of the class containing your RMQ structure. Since your RMQ
structures will be in the rmq directory, you'll need to prefix the name of the class to test with rmq.. For
example, you could run your sparse table code by running

java -ea RMQDriver rmq.SparseTableRMQ

The random-seed.,: parameter (a Long) is optional and is used to force a specific random number seed
when running the program. You might find this helpful during testing to guarantee that each run of the
program tests your RMQ structure on identical inputs.

i. (1 Point) Implement the (O(n?), O(1)) RMQ data structure that precomputes the answers to all
possible range minimum queries. This is mostly a warmup to make sure you're able to get our
test harness running and your code compiling.

ii. (3 Points) Implement a sparse table RMQ data structure. Make sure that your data structure can
answer queries in time O(1); to do so, we recommend implementing the data structure you de-
signed in Problem One.

iii. (2 Points) Implement the (O(n), O(log n)) hybrid structure we described in the first lecture,
which combines a sparse table with the (O(1), O(n)) linear-scan solution.

iv. (4 Points) Implement the Fischer-Heun data structure. You're welcome to implement either the
slightly simplified version of the Fischer-Heun structure described in lecture (which uses Carte-
sian tree numbers and is a bit simpler to implement) or the version of Fischer-Heun from the
original paper (which uses ballot numbers and is a bit trickier). You may want to base your code
for this part on the code you wrote in part (ii1).

If you need a Java refresher, the CS108 course website (http://cs108.stanford.edu) has many useful
handouts about the Java language. Handouts #02 and #03 might be particularly useful. If you'd like
some extra resources beyond that, please feel free to contact the course staff!

http://cs108.stanford.edu/

	Working in Pairs

